Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Hum Brain Mapp ; 44(4): 1579-1592, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36440953

RESUMEN

This study aimed to investigate the influence of stroke lesions in predefined highly interconnected (rich-club) brain regions on functional outcome post-stroke, determine their spatial specificity and explore the effects of biological sex on their relevance. We analyzed MRI data recorded at index stroke and ~3-months modified Rankin Scale (mRS) data from patients with acute ischemic stroke enrolled in the multisite MRI-GENIE study. Spatially normalized structural stroke lesions were parcellated into 108 atlas-defined bilateral (sub)cortical brain regions. Unfavorable outcome (mRS > 2) was modeled in a Bayesian logistic regression framework. Effects of individual brain regions were captured as two compound effects for (i) six bilateral rich club and (ii) all further non-rich club regions. In spatial specificity analyses, we randomized the split into "rich club" and "non-rich club" regions and compared the effect of the actual rich club regions to the distribution of effects from 1000 combinations of six random regions. In sex-specific analyses, we introduced an additional hierarchical level in our model structure to compare male and female-specific rich club effects. A total of 822 patients (age: 64.7[15.0], 39% women) were analyzed. Rich club regions had substantial relevance in explaining unfavorable functional outcome (mean of posterior distribution: 0.08, area under the curve: 0.8). In particular, the rich club-combination had a higher relevance than 98.4% of random constellations. Rich club regions were substantially more important in explaining long-term outcome in women than in men. All in all, lesions in rich club regions were associated with increased odds of unfavorable outcome. These effects were spatially specific and more pronounced in women.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Teorema de Bayes , Encéfalo , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/patología , Modelos Neurológicos
2.
Front Neurosci ; 16: 994458, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090258

RESUMEN

Background purpose: A substantial number of patients with acute ischemic stroke (AIS) experience multiple acute lesions (MAL). We here aimed to scrutinize MAL in a large radiologically deep-phenotyped cohort. Materials and methods: Analyses relied upon imaging and clinical data from the international MRI-GENIE study. Imaging data comprised both Fluid-attenuated inversion recovery (FLAIR) for white matter hyperintensity (WMH) burden estimation and diffusion-weighted imaging (DWI) sequences for the assessment of acute stroke lesions. The initial step featured the systematic evaluation of occurrences of MAL within one and several vascular supply territories. Associations between MAL and important imaging and clinical characteristics were subsequently determined. The interaction effect between single and multiple lesion status and lesion volume was estimated by means of Bayesian hierarchical regression modeling for both stroke severity and functional outcome. Results: We analyzed 2,466 patients (age = 63.4 ± 14.8, 39% women), 49.7% of which presented with a single lesion. Another 37.4% experienced MAL in a single vascular territory, while 12.9% featured lesions in multiple vascular territories. Within most territories, MAL occurred as frequently as single lesions (ratio ∼1:1). Only the brainstem region comprised fewer patients with MAL (ratio 1:4). Patients with MAL presented with a significantly higher lesion volume and acute NIHSS (7.7 vs. 1.7 ml and 4 vs. 3, p FDR < 0.001). In contrast, patients with a single lesion were characterized by a significantly higher WMH burden (6.1 vs. 5.3 ml, p FDR = 0.048). Functional outcome did not differ significantly between patients with single versus multiple lesions. Bayesian analyses suggested that the association between lesion volume and stroke severity between single and multiple lesions was the same in case of anterior circulation stroke. In case of posterior circulation stroke, lesion volume was linked to a higher NIHSS only among those with MAL. Conclusion: Multiple lesions, especially those within one vascular territory, occurred more frequently than previously reported. Overall, multiple lesions were distinctly linked to a higher acute stroke severity, a higher total DWI lesion volume and a lower WMH lesion volume. In posterior circulation stroke, lesion volume was linked to a higher stroke severity in multiple lesions only.

3.
Brain Commun ; 4(2): fcac020, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282166

RESUMEN

Stroke represents a considerable burden of disease for both men and women. However, a growing body of literature suggests clinically relevant sex differences in the underlying causes, presentations and outcomes of acute ischaemic stroke. In a recent study, we reported sex divergences in lesion topographies: specific to women, acute stroke severity was linked to lesions in the left-hemispheric posterior circulation. We here determined whether these sex-specific brain manifestations also affect long-term outcomes. We relied on 822 acute ischaemic patients [age: 64.7 (15.0) years, 39% women] originating from the multi-centre MRI-GENIE study to model unfavourable outcomes (modified Rankin Scale >2) based on acute neuroimaging data in a Bayesian hierarchical framework. Lesions encompassing bilateral subcortical nuclei and left-lateralized regions in proximity to the insula explained outcomes across men and women (area under the curve = 0.81). A pattern of left-hemispheric posterior circulation brain regions, combining left hippocampus, precuneus, fusiform and lingual gyrus, occipital pole and latero-occipital cortex, showed a substantially higher relevance in explaining functional outcomes in women compared to men [mean difference of Bayesian posterior distributions (men - women) = -0.295 (90% highest posterior density interval = -0.556 to -0.068)]. Once validated in prospective studies, our findings may motivate a sex-specific approach to clinical stroke management and hold the promise of enhancing outcomes on a population level.

4.
Front Neurol ; 12: 700616, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566844

RESUMEN

Objective: To personalize the prognostication of post-stroke outcome using MRI-detected cerebrovascular pathology, we sought to investigate the association between the excessive white matter hyperintensity (WMH) burden unaccounted for by the traditional stroke risk profile of individual patients and their long-term functional outcomes after a stroke. Methods: We included 890 patients who survived after an acute ischemic stroke from the MRI-Genetics Interface Exploration (MRI-GENIE) study, for whom data on vascular risk factors (VRFs), including age, sex, atrial fibrillation, diabetes mellitus, hypertension, coronary artery disease, smoking, prior stroke history, as well as acute stroke severity, 3- to-6-month modified Rankin Scale score (mRS), WMH, and brain volumes, were available. We defined the unaccounted WMH (uWMH) burden via modeling of expected WMH burden based on the VRF profile of each individual patient. The association of uWMH and mRS score was analyzed by linear regression analysis. The odds ratios of patients who achieved full functional independence (mRS < 2) in between trichotomized uWMH burden groups were calculated by pair-wise comparisons. Results: The expected WMH volume was estimated with respect to known VRFs. The uWMH burden was associated with a long-term functional outcome (ß = 0.104, p < 0.01). Excessive uWMH burden significantly reduced the odds of achieving full functional independence after a stroke compared to the low and average uWMH burden [OR = 0.4, 95% CI: (0.25, 0.63), p < 0.01 and OR = 0.61, 95% CI: (0.42, 0.87), p < 0.01, respectively]. Conclusion: The excessive amount of uWMH burden unaccounted for by the traditional VRF profile was associated with worse post-stroke functional outcomes. Further studies are needed to evaluate a lifetime brain injury reflected in WMH unrelated to the VRF profile of a patient as an important factor for stroke recovery and a plausible indicator of brain health.

5.
Front Neurosci ; 15: 691244, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34321995

RESUMEN

OBJECTIVE: Neuroimaging measurements of brain structural integrity are thought to be surrogates for brain health, but precise assessments require dedicated advanced image acquisitions. By means of quantitatively describing conventional images, radiomic analyses hold potential for evaluating brain health. We sought to: (1) evaluate radiomics to assess brain structural integrity by predicting white matter hyperintensities burdens (WMH) and (2) uncover associations between predictive radiomic features and clinical phenotypes. METHODS: We analyzed a multi-site cohort of 4,163 acute ischemic strokes (AIS) patients with T2-FLAIR MR images with total brain and WMH segmentations. Radiomic features were extracted from normal-appearing brain tissue (brain mask-WMH mask). Radiomics-based prediction of personalized WMH burden was done using ElasticNet linear regression. We built a radiomic signature of WMH with stable selected features predictive of WMH burden and then related this signature to clinical variables using canonical correlation analysis (CCA). RESULTS: Radiomic features were predictive of WMH burden (R 2 = 0.855 ± 0.011). Seven pairs of canonical variates (CV) significantly correlated the radiomics signature of WMH and clinical traits with respective canonical correlations of 0.81, 0.65, 0.42, 0.24, 0.20, 0.15, and 0.15 (FDR-corrected p-values CV 1 - 6 < 0.001, p-value CV 7 = 0.012). The clinical CV1 was mainly influenced by age, CV2 by sex, CV3 by history of smoking and diabetes, CV4 by hypertension, CV5 by atrial fibrillation (AF) and diabetes, CV6 by coronary artery disease (CAD), and CV7 by CAD and diabetes. CONCLUSION: Radiomics extracted from T2-FLAIR images of AIS patients capture microstructural damage of the cerebral parenchyma and correlate with clinical phenotypes, suggesting different radiographical textural abnormalities per cardiovascular risk profile. Further research could evaluate radiomics to predict the progression of WMH and for the follow-up of stroke patients' brain health.

6.
Nat Commun ; 12(1): 3289, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078897

RESUMEN

Acute ischemic stroke affects men and women differently. In particular, women are often reported to experience higher acute stroke severity than men. We derived a low-dimensional representation of anatomical stroke lesions and designed a Bayesian hierarchical modeling framework tailored to estimate possible sex differences in lesion patterns linked to acute stroke severity (National Institute of Health Stroke Scale). This framework was developed in 555 patients (38% female). Findings were validated in an independent cohort (n = 503, 41% female). Here, we show brain lesions in regions subserving motor and language functions help explain stroke severity in both men and women, however more widespread lesion patterns are relevant in female patients. Higher stroke severity in women, but not men, is associated with left hemisphere lesions in the vicinity of the posterior circulation. Our results suggest there are sex-specific functional cerebral asymmetries that may be important for future investigations of sex-stratified approaches to management of acute ischemic stroke.


Asunto(s)
Tronco Encefálico/patología , Accidente Cerebrovascular Isquémico/patología , Corteza Sensoriomotora/patología , Tálamo/patología , Anciano , Anciano de 80 o más Años , Teorema de Bayes , Mapeo Encefálico , Tronco Encefálico/irrigación sanguínea , Tronco Encefálico/diagnóstico por imagen , Revascularización Cerebral/métodos , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/terapia , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Factores de Riesgo , Corteza Sensoriomotora/irrigación sanguínea , Corteza Sensoriomotora/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Factores Sexuales , Tálamo/irrigación sanguínea , Tálamo/diagnóstico por imagen , Resultado del Tratamiento
7.
Neurology ; 95(1): e79-e88, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32493718

RESUMEN

OBJECTIVE: To examine etiologic stroke subtypes and vascular risk factor profiles and their association with white matter hyperintensity (WMH) burden in patients hospitalized for acute ischemic stroke (AIS). METHODS: For the MRI Genetics Interface Exploration (MRI-GENIE) study, we systematically assembled brain imaging and phenotypic data for 3,301 patients with AIS. All cases underwent standardized web tool-based stroke subtyping with the Causative Classification of Ischemic Stroke (CCS). WMH volume (WMHv) was measured on T2 brain MRI scans of 2,529 patients with a fully automated deep-learning trained algorithm. Univariable and multivariable linear mixed-effects modeling was carried out to investigate the relationship of vascular risk factors with WMHv and CCS subtypes. RESULTS: Patients with AIS with large artery atherosclerosis, major cardioembolic stroke, small artery occlusion (SAO), other, and undetermined causes of AIS differed significantly in their vascular risk factor profile (all p < 0.001). Median WMHv in all patients with AIS was 5.86 cm3 (interquartile range 2.18-14.61 cm3) and differed significantly across CCS subtypes (p < 0.0001). In multivariable analysis, age, hypertension, prior stroke, smoking (all p < 0.001), and diabetes mellitus (p = 0.041) were independent predictors of WMHv. When adjusted for confounders, patients with SAO had significantly higher WMHv compared to those with all other stroke subtypes (p < 0.001). CONCLUSION: In this international multicenter, hospital-based cohort of patients with AIS, we demonstrate that vascular risk factor profiles and extent of WMH burden differ by CCS subtype, with the highest lesion burden detected in patients with SAO. These findings further support the small vessel hypothesis of WMH lesions detected on brain MRI of patients with ischemic stroke.


Asunto(s)
Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología , Sustancia Blanca/patología , Anciano , Anciano de 80 o más Años , Arteriopatías Oclusivas/complicaciones , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Aprendizaje Profundo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
8.
Mayo Clin Proc ; 95(5): 955-965, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32370856

RESUMEN

OBJECTIVE: To determine whether brain volume is associated with functional outcome after acute ischemic stroke (AIS). PATIENTS AND METHODS: This study was conducted between July 1, 2014, and March 16, 2019. We analyzed cross-sectional data of the multisite, international hospital-based MRI-Genetics Interface Exploration study with clinical brain magnetic resonance imaging obtained on admission for index stroke and functional outcome assessment. Poststroke outcome was determined using the modified Rankin Scale score (0-6; 0 = asymptomatic; 6 = death) recorded between 60 and 190 days after stroke. Demographic characteristics and other clinical variables including acute stroke severity (measured as National Institutes of Health Stroke Scale score), vascular risk factors, and etiologic stroke subtypes (Causative Classification of Stroke system) were recorded during index admission. RESULTS: Utilizing the data from 912 patients with AIS (mean ± SD age, 65.3±14.5 years; male, 532 [58.3%]; history of smoking, 519 [56.9%]; hypertension, 595 [65.2%]) in a generalized linear model, brain volume (per 155.1 cm3) was associated with age (ß -0.3 [per 14.4 years]), male sex (ß 1.0), and prior stroke (ß -0.2). In the multivariable outcome model, brain volume was an independent predictor of modified Rankin Scale score (ß -0.233), with reduced odds of worse long-term functional outcomes (odds ratio, 0.8; 95% CI, 0.7-0.9) in those with larger brain volumes. CONCLUSION: Larger brain volume quantified on clinical magnetic resonance imaging of patients with AIS at the time of stroke purports a protective mechanism. The role of brain volume as a prognostic, protective biomarker has the potential to forge new areas of research and advance current knowledge of the mechanisms of poststroke recovery.


Asunto(s)
Isquemia Encefálica/fisiopatología , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Accidente Cerebrovascular/fisiopatología , Anciano , Isquemia Encefálica/complicaciones , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Recuperación de la Función , Accidente Cerebrovascular/etiología
9.
Med Image Anal ; 63: 101698, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32339896

RESUMEN

Registration is a core component of many imaging pipelines. In case of clinical scans, with lower resolution and sometimes substantial motion artifacts, registration can produce poor results. Visual assessment of registration quality in large clinical datasets is inefficient. In this work, we propose to automatically assess the quality of registration to an atlas in clinical FLAIR MRI scans of the brain. The method consists of automatically segmenting the ventricles of a given scan using a neural network, and comparing the segmentation to the atlas ventricles propagated to image space. We used the proposed method to improve clinical image registration to a general atlas by computing multiple registrations - one directly to the general atlas and others via different age-specific atlases - and then selecting the registration that yielded the highest ventricle overlap. Finally, as an example application of the complete pipeline, a voxelwise map of white matter hyperintensity burden was computed using only the scans with registration quality above a predefined threshold. Methods were evaluated in a single-site dataset of more than 1000 scans, as well as a multi-center dataset comprising 142 clinical scans from 12 sites. The automated ventricle segmentation reached a Dice coefficient with manual annotations of 0.89 in the single-site dataset, and 0.83 in the multi-center dataset. Registration via age-specific atlases could improve ventricle overlap compared to a direct registration to the general atlas (Dice similarity coefficient increase up to 0.15). Experiments also showed that selecting scans with the registration quality assessment method could improve the quality of average maps of white matter hyperintensity burden, instead of using all scans for the computation of the white matter hyperintensity map. In this work, we demonstrated the utility of an automated tool for assessing image registration quality in clinical scans. This image quality assessment step could ultimately assist in the translation of automated neuroimaging pipelines to the clinic.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Artefactos , Encéfalo/diagnóstico por imagen , Humanos , Redes Neurales de la Computación
10.
Front Neurol ; 10: 956, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551913

RESUMEN

Objective: To determine whether the rich-club organization, essential for information transport in the human connectome, is an important biomarker of functional outcome after acute ischemic stroke (AIS). Methods: Consecutive AIS patients (N = 344) with acute brain magnetic resonance imaging (MRI) (<48 h) were eligible for this study. Each patient underwent a clinical MRI protocol, which included diffusion weighted imaging (DWI). All DWIs were registered to a template on which rich-club regions have been defined. Using manual outlines of stroke lesions, we automatically counted the number of affected rich-club regions and assessed its effect on the National Institute of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS; obtained at 90 days post-stroke) scores through ordinal regression. Results: Of 344 patients (median age 65, inter-quartile range 54-76 years) with a median DWI lesion volume (DWIv) of 3cc, 64% were male. We established that an increase in number of rich-club regions affected by a stroke increases the odds of poor stroke outcome, measured by NIHSS (OR: 1.77, 95%CI 1.41-2.21) and mRS (OR: 1.38, 95%CI 1.11-1.73). Additionally, we demonstrated that the OR exceeds traditional markers, such as DWIv (ORNIHSS 1.08, 95%CI 1.06-1.11; ORmRS 1.05, 95%CI 1.03-1.07) and age (ORNIHSS 1.03, 95%CI 1.01-1.05; ORmRS 1.05, 95%CI 1.03-1.07). Conclusion: In this proof-of-concept study, the number of rich-club nodes affected by a stroke lesion presents a translational biomarker of stroke outcome, which can be readily assessed using standard clinical AIS imaging protocols and considered in functional outcome prediction models beyond traditional factors.

11.
Neuroimage Clin ; 23: 101884, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31200151

RESUMEN

White matter hyperintensity (WMH) burden is a critically important cerebrovascular phenotype linked to prediction of diagnosis and prognosis of diseases, such as acute ischemic stroke (AIS). However, current approaches to its quantification on clinical MRI often rely on time intensive manual delineation of the disease on T2 fluid attenuated inverse recovery (FLAIR), which hinders high-throughput analyses such as genetic discovery. In this work, we present a fully automated pipeline for quantification of WMH in clinical large-scale studies of AIS. The pipeline incorporates automated brain extraction, intensity normalization and WMH segmentation using spatial priors. We first propose a brain extraction algorithm based on a fully convolutional deep learning architecture, specifically designed for clinical FLAIR images. We demonstrate that our method for brain extraction outperforms two commonly used and publicly available methods on clinical quality images in a set of 144 subject scans across 12 acquisition centers, based on dice coefficient (median 0.95; inter-quartile range 0.94-0.95; p < 0.01) and Pearson correlation of total brain volume (r = 0.90). Subsequently, we apply it to the large-scale clinical multi-site MRI-GENIE study (N = 2783) and identify a decrease in total brain volume of -2.4 cc/year. Additionally, we show that the resulting total brain volumes can successfully be used for quality control of image preprocessing. Finally, we obtain WMH volumes by building on an existing automatic WMH segmentation algorithm that delineates and distinguishes between different cerebrovascular pathologies. The learning method mimics expert knowledge of the spatial distribution of the WMH burden using a convolutional auto-encoder. This enables successful computation of WMH volumes of 2533 clinical AIS patients. We utilize these results to demonstrate the increase of WMH burden with age (0.950 cc/year) and show that single site estimates can be biased by the number of subjects recruited.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Transl Stroke Res ; 10(6): 630-638, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30693424

RESUMEN

Chronic white matter structural injury is a risk factor for poor long-term outcomes after acute ischemic stroke (AIS). However, it is unclear how white matter structural injury predisposes to poor outcomes after AIS. To explore this question, in 42 AIS patients with moderate to severe white matter hyperintensity (WMH) burden, we characterized WMH and normal-appearing white matter (NAWM) diffusivity anisotropy metrics in the hemisphere contralateral to acute ischemia in relation to ischemic tissue and early functional outcomes. All patients underwent brain MRI with dynamic susceptibility contrast perfusion and diffusion tensor imaging within 12 h and at day 3-5 post stroke. Early neurological outcomes were measured as the change in NIH Stroke Scale score from admission to day 3-5 post stroke. Target mismatch profile, percent mismatch lost, infarct growth, and rates of good perfusion were measured to assess ischemic tissue outcomes. NAWM mean diffusivity was significantly lower in the group with early neurological improvement (ENI, 0.79 vs. 0.82 × 10-3, mm2/s; P = 0.02). In multivariable logistic regression, NAWM mean diffusivity was an independent radiographic predictor of ENI (ß = - 17.6, P = 0.037). Median infarct growth was 118% (IQR 26.8-221.9%) despite good reperfusion being observed in 65.6% of the cohort. NAWM and WMH diffusivity metrics were not associated with target mismatch profile, percent mismatch lost, or infarct growth. Our results suggest that, in AIS patients, white matter structural integrity is associated with poor early neurological outcomes independent of ischemic tissue outcomes.


Asunto(s)
Isquemia Encefálica/patología , Accidente Cerebrovascular/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/diagnóstico por imagen , Imagen de Difusión Tensora , Femenino , Humanos , Leucoaraiosis/patología , Masculino , Persona de Mediana Edad , Pronóstico , Recuperación de la Función , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico por imagen , Sustancia Blanca/lesiones
13.
Neurol Genet ; 3(5): e180, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28852707

RESUMEN

OBJECTIVE: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study. METHODS: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease. CONCLUSIONS: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...